If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x-69=0
a = 2; b = 8; c = -69;
Δ = b2-4ac
Δ = 82-4·2·(-69)
Δ = 616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616}=\sqrt{4*154}=\sqrt{4}*\sqrt{154}=2\sqrt{154}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{154}}{2*2}=\frac{-8-2\sqrt{154}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{154}}{2*2}=\frac{-8+2\sqrt{154}}{4} $
| x+2x+3x=336 | | 2x+5(-1/9x+3)=9 | | t-1=5 | | -133y=33(16-4) | | 4(2^x-3)=20 | | 5/2x-2/3x=-3/8 | | a+3/2=10 | | 2x-100=1000 | | R(x)=x+3/x(x+4) | | 2x-500=1000 | | 1000+2x=0 | | 1000*2x=0 | | (12x+7)+(20x-13)=90 | | 6s-12=3s+21 | | 4x-7=(x+2)÷4 | | (12x+7)+(20x-13)=180 | | 3p=6p-87 | | 10x-5=3(3x-6) | | 6c+7=7c | | +8(2x+4)=8-x | | –2x+1=x+13 | | 8t+18=10t | | 9b2+30b+25=0 | | t+50=6t | | b^2+3b-14=0 | | 1c+45=4c | | 3^2-9=-18x | | 9m^2-12=0 | | 0.55x0.45(4-x)=0.9(-1) | | X+2x+x=31 | | 2(x2+1)=2 | | 3/4n+12=15 |